Package: plsmselect 0.2.0
plsmselect: Linear and Smooth Predictor Modelling with Penalisation and Variable Selection
Fit a model with potentially many linear and smooth predictors. Interaction effects can also be quantified. Variable selection is done using penalisation. For l1-type penalties we use iterative steps alternating between using linear predictors (lasso) and smooth predictors (generalised additive model).
Authors:
plsmselect_0.2.0.tar.gz
plsmselect_0.2.0.zip(r-4.5)plsmselect_0.2.0.zip(r-4.4)plsmselect_0.2.0.zip(r-4.3)
plsmselect_0.2.0.tgz(r-4.4-any)plsmselect_0.2.0.tgz(r-4.3-any)
plsmselect_0.2.0.tar.gz(r-4.5-noble)plsmselect_0.2.0.tar.gz(r-4.4-noble)
plsmselect_0.2.0.tgz(r-4.4-emscripten)plsmselect_0.2.0.tgz(r-4.3-emscripten)
plsmselect.pdf |plsmselect.html✨
plsmselect/json (API)
# Install 'plsmselect' in R: |
install.packages('plsmselect', repos = c('https://indrayudhghosal.r-universe.dev', 'https://cloud.r-project.org')) |
- simData - Simulated dataset to be used for gamlasso
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 5 years agofrom:d93f1849b3. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 16 2024 |
R-4.5-win | OK | Nov 16 2024 |
R-4.5-linux | OK | Nov 16 2024 |
R-4.4-win | OK | Nov 16 2024 |
R-4.4-mac | OK | Nov 16 2024 |
R-4.3-win | OK | Nov 16 2024 |
R-4.3-mac | OK | Nov 16 2024 |
Exports:cumbasehazgamlassogamlassoChecksgamlassoFit
Dependencies:clicodetoolsdplyrfansiforeachgenericsglmnetglueiteratorslatticelifecyclemagrittrMatrixmgcvnlmepillarpkgconfigR6RcppRcppEigenrlangshapesurvivaltibbletidyselectutf8vctrswithr
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Internal Function | cbh |
Function to create the simulated dataset | create_dataset |
Cumulative Baseline Hazard of a gamlasso object | cumbasehaz |
Internal Function | find_family |
Internal Function | formula_setup |
Fitting a gamlasso model | gamlasso gamlasso.default gamlasso.formula |
Checking data before fitting gamlasso | gamlassoChecks |
The function fitting a gamlasso model | gamlassoFit |
Internal Function | lasso_gam_loop |
Internal Function | meandist |
Internal Function | nzeros |
Prediction from a fitted gamlasso model | predict.gamlasso |
Print a gamlasso object | print.gamlasso |
Internal Function | readconfirm |
Simulated dataset to be used for gamlasso | simData |
Summary for a gamlasso fit | summary.gamlasso |